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GAUSSIAN PROCESSES: NONLINEAR ANALYSIS AND STOCHASTIC CALCULUS* v

Steel T. Huang Stamatis Cambanis

University of Cincinnati University of North Carolina
Cincinnati, Ohio Chapel Hill, North Carolina

1. Introduction

For the Wiener process a large number of results on its nonlinear analysis
have been developed (see Wiener (1958) and McKean (1973)), as well as a fairly

complete and rich stochastic calculus (see for instance Friedman (1976)). Since

pproved for

the Wiener process is a Gaussian martingale, it is natural to investigate the ex-
tent to which these or similar results are true for (general) Gaussian processes
and for (general) martingales.

For martingales the corresponding stochastic calculus is now well developed
(see Kunita and Watanabe (1967) and Meyer (1976)). The nonlinear analysis and a
stochastic calculus for Gaussian processes have been the subject of [3], [4] and
[5]. This article is a survey of these references and its purpose is to make the
main results and the basic ingredients of the approach easily accessible to the
reader.

The basis of the approach is provided by the structure of the nonlinear space
of a Gaussian process as developed by Kakutani (1961), Neveu (1968) and Kallianpur
(1970); this is reviewed in Section 2. Sections 3 and 4 include results on the
nonlinear analysis of Gaussian processes. Results currently available on the
stochastic calculus of Gaussian processes are presented in Sections 5 to 8. The
definition of the stochastic integral is in Section 6, its main properties in Sec-
tion 5, a useful Riemann-like expression in Section 7, and the differential formu-
la in Section 8. Stochastic differential equations with (general) Gaussian noise
are currently under study.

The material in Sections 3, 4 (second half), 5 and 6 is from [3]; the first half

of Section 4 is from [4]; and Sections 7 and 8 are from [5].
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2. The Nonlinear Space of a Gaussian Process

The following notation and terminology will be used throughout. X = (Xt’ teT)
is a Gaussian process with mean zero and covariance function R(t,s), defined on a
probability space (Q,B,P), and T is an interval on the real line (even though more
general index sets could be used). B(X) is the o-field generated by the random
variables of X. The nonlinear space of X, LZ(X) = LZ(Q,B(X) ,P), consists of all
B(X) -measurable random variables with finite second moment which are called (non-
linear) Lz-functionals of X. The linear space of X, H(X), is the closed subspace
of LZ(X) spanned by Xt’ teT, and its elements are called linear L2~functionals of
X. For each p = 1,2,..., Pp(X) is the set of all polynomials in the elements of
H(X) with degree <p, PO(X) is the set of constants, QP(X) is the set of all poly-
nomials in P p()() which are orthogonal to Pp_l(X), QO(X) = PO(_X), and the closure
%(X) of Qp(X) in L,(X) is called the p-th homogeneous chaos. For p #q, 'Q_p(X) 1
Qq()().

The structure of the nonlinear space of a Gaussian process is given by the
following relationship, which can be found in [7] or [11], and which forms the

basis of our analysis,
L) = e T (X) T e HP) .
p=0 p=0

Here ® denotes tensor product and ® symmetric tensor product. = means "is isomor-
phic to" and the isomorphism ¢ from o;sOH;p(X) onto L2 (X) maps each H;p()() onto
'Qp(X). If EeH(X) then

olexp(BE)} = exp(§-4EED)
where exp(8f) = $=0 (p!)'A’E;p, and if €;,...,EeH(X) are orthogonal then

¥ % 4 K
o(g; "e...e, ) = (p!) W l-lp.’&;g(ﬁj) ’
o B 2ame
where p = py*...+py. E denotes expectation, and the Hermite polynomial Hp o2 With
’
degree p and parameter 02 is defined as follows: {l~lp ot (&¢), p=0,1,2,...} is ob-

tained by applying the Gram-Schmidt procedure to orthogonalize the sequence of

.
L
3

random variables {sp,pso,l,z,.. .} in LZ(E), where £ is a Gaussian variable with

mean zero and variance oz.
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3. Multiple Wiener Integrals (MWI's)

In order to introduce the MWI's or order p=1,2,...
I(£)=[of £(ty,...,t )X, ...dX = [ £ ()dxP
pPp 1 P11 Py tprP £
we first have to define the space of (deterministic) integrands l\z(epR) .
For p=1, AZ(R) is the completion of the space of all step functions on T,

f(t) = z§=1fn1 (an’bn] (t), with respect to the inner product

N M

e 2 8 : 3 ¥

<£,g> = {_{ £(t)g(s)dR(t,s) = ngl mglfngm{fl(bn.dm) +R(ay,cp) - R(3,,dp) - R(b sc )
M . . :

(where g(t) =} 1 (t)). Thus A,(R) is a Hilbert space of "'functions' on
=18 (c_,d, ] 2 .

T; it contains those functions f for which the Riemann integral fff(t)f(s)d R(t,s)

exists, and when R is of bounded variation it contains all bounded measurable func-

tions. When R(t,s) = min(t,s), AZ(R) = LZ(T,dt). The MWI of order 1, II:AZ(_R) ->

H(X), is the isometry into H(X) defined by
N N
Il(nzlfnl(an’bn]) i n—z-lfn(xbn-xan) .
I1 becomes onto H(X), ‘hence an isomorphism, if xtO =0 a.s. for some toeT, as we
now assume (otherwise replace H(X) by H(AX), the linear space of the increments
AX of X).

Az(opR) is defined similarly, by starting with step functions on TP, and is
isomorphic to opAZ(R). Az(ng) is the subspace of all symmetric "functions" in
Az(opR) (a concept defined again starting with step functions) and AZ(;pR) = :PAZ (R).
Since A, (R) = H(X) under I, AZ(SPR) = 3PA2(R) is isomorphic to H;p()() and we denote
this isomorphism by 1P, Then the MNI of order P L A,(@PR) » QP(X), is defined

by ~
1= e - 1°P

and is extended to Az(opR) by Ip(f) = Ip(§) where T is the symmetric tensor of
feh, (ePR).

Thus each MWI Ip is a bounded linear operator from Az(opR) onto Qp(X) , with the
following properties:

E{Ip(f)lp(g)} = pl <?’E’Az(o"a) ;
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E{Ip(f)lq(g)} 0 ifp#q

O A - 2(f¢.dX
®... ) = :
plty "S- ™) = DR Vi 120
J J J
where {¢>1,... ,¢k} is an orthogonal set in AZ(R) and p;+.. -*P = P. Also every L,-
functional 6 of X, eeLZ(X), has an orthogonal development
6-E=JI(f£)=171 [f ()P
A, (&P ifo-Fo=7 .1 = f =%,p=>1.
for some £ eA,(¢R), and if 6 - E6 Ip=1 aft) 2;=11p(gp) then £ =g, p >
MWT's of the following type can also be defined
a4 ...dt_ = P
Jp (£ ][ ][fp(tl, t:p))(t1 X, dt; t [ £,(0)X dt

P TP 53
for fpekz(opR) with similar properties when X is mean square continuous. Finally

the MNI's of both types can be evaluated from the sample paths of X.

4. Nonlinear Systems with Gaussian Inputs

Consider a nonlinear system with input the mean square continuous Gaussian pro-
cess X = {Xt, teT} and output the second order process Y = {Yt’ teT}, i.e. the only
assumption on the system is that YteL2 (X) » teT. Then, by Section 3, the output Y
can be represented by

Yo w BY, 2 3 J 60,0 b0k ok e A
t t p=1{ {p P i t, tpl P

where fp(t;-)eAZ(SPR). The action of the system to the input X is thus represented
by the sequence of kernels {fp};ﬂ which depends on the input X (distinct input
Gaussian processes will in general produce distinct sequences of kernels). These
kernels can be determined from knowledge of the joint statistics of the input and
output processes. Moreover, for almost every sample function of X as its input,
theoutput of the nonlinear system has a Volterra representation (i.e. a series
representation like above with the MWI's replaced by Lebesgue integrals) whose
kernels can be found from the kernels {fp}; i.e. assuming only that EY% < o, teT,
we have the remarkable result that for a small class of deterministic inputs (al-
most all sample functions of X) the nonlinear system has a Volterra input-output

representation - a result obtained by Fréchet (1910) for large classes of inputs,
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like C(T) or LZ(T), when the system is continuous (i.e., the output at each fixed
t, is a continuous functional on C(T) or LZ(T)). Finally if the nonlinear system
has a Volterra input-output representation with kernels {Kp} when acting on deter-
ministic inputs in L,(T), the relationship between the two sets of kernels {fp}
and {Kp} can be established. For the details see [4].

When the input Gaussian process X has stationary increments with say Xg=10
a.s., a more convenient representation of the system output is

Y. =E, * } VTR |- ¢ T VIR N A : |
t t p=1 _i =y i Pty tp

where fp(t;-)eAz(apR). When the system is time invariant, in the sense that
fp(t;tl,...,tp) = gp(tl-t,...,tp-t)

then Y is strictly stationary and is called X-presentable. A natural question is
how large is the class of X-presentable processes, or the class of processes
which can be approximated by X-presentable processes. By introducing a Fourier
transform in the spaces Az(opR), results similar to those valid when X is the
Wiener process can be proved:

(i) If X has absolutely continuous spectral distribution, then every X-presen-
table process is strongly mixing.

(ii) (the analogue of the Wiener-Nisio theorem). If X is sample continuous,
ergodic, and satisfies an additional weak condition (valid when X has rational
spectral density), then every measurable, ergodic, strictly stationary process is

the limit in law of a sequence of X-presentable processes.

S. The Stochastic Integral and its Properties

The appropriate space of stochastic integrands f for the stochastic integral

1(f) = { £(t)dX,
is a generalization of the space A,(R) denoted by AZ'LZ(X)(R)‘ Like A,(R),
AZ'LZ(X) (R) is the completion of the space of all L,(X)-valued step functions on T,
N a i J
f(t) = En-lfnl(an,bn](t)’ f€L,(X), with respect to the inner product 3

n=

N M
2
€ = [JEEDREIRES) = T T ECE ) (ROy 4 *R (3 ¢) Rl ) Rlpyc))
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M . i
(where g(t) =) _,g1 (t), g €L, (X)). Thus A,, . (R) is a Hilbert space of
Ln=18m (el ] &l 2;L, (X)
"second order processes'" on T and its properties are analogues of those of A, (R).
In particular, when R is of bounded variation A2 L (X)(R) contains all measurable
second order processes f(t) with Ef (t) bounded, and if R(t,s) = min(t,s) then

(R) =L (T,dt), the Hilbert space of all Lebesgue square integrable

AL, 2;L,(X)
LZ(X)-valued functions on T. Since Lz(X) = e =0 Qp(x) we have

R (R) = (R) .
21,0 " 7 2427 00
The stochastic integral
3 C 0 =
p i AZ;LZ(X)(R) LZ(X) LZ(X)QQb
is then an unbounded, densely defined, closed linear onto map. Its detailed defin-
ition is given in the next section. Here we summarize its basic properties. Each
A L (X)(R) belongs to the domain D(I) of the stochastic integral which, when re-
strlcted to A (X)(R)’ is a bounded linear operator onto Qﬁ+1(X) with norm
%
(p*1) % If feAZ 31,00 (R) and f = z"’_o p fpeha,g oo ()5 then £D(T) if and only

if X E[I(f )] < », in which case I1(f) = | I(fb).

p=0
Since 1 is onto LZ(X), every Lz-functional 6 of X, eeLZ(X), has a stochastic
integral representation

= E0 + [ £(t)dX,
: )

for some feD(I). In fact f may be taken to be adapted to X, i.e. feD(I)nA;?Lz(x)(R)

where A (R) is the closed subspace of A, (R) generated by the simple 9
X) 2;L,(X)

ad
Z;LZ
g ; . oN 2
functions adapted to X (i.e. f(t) = zn=1fn1(an,bb](t) where each £ is o(X,t<a )-
measurable). Thus the stochastic integral is defined for general (not necessarily
adapted) integrands, and when X is the Wiener process it extends the Itd integral
and it agrees with Skorokhod's (1975) generalization of the It8 integral tc not
necessarily adapted integrands.
; _ N 1 .

A step function f(t) = Zn=1fnl(an,bn](t)’ fheLz(X), is called future increments
independent (fii) if each f is independent of the increments of X after a and
the closed subspace of Az iL, (X)(R) generated by the fii step functions is denoted

by Agli (X)(R) Agli (X)(R) belongs to the domain of the stochastic integral and
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when the stochastic integral is restricted to it it becomes norm preserving, like
the It0 integral (its range I(Agiz(x) (R)) is not yet characterized).

As an indication of the calculation of the stocnastic integral let us consider
the simplest possible integrand f(t) = 6¢(t), 8eL,(X), ¢eA,(R). If 6 and J'T¢ (t)dX,
are independent, then

4 0¢(t)dX, = © { ¢(t)dX,

If 8eH(X), then
% 06 (t)dX, = 6 4 ¢(t)dX, - E(6 { ¢(t)dxy) .

More important, when R is continuous and of bounded variation on [a,b]x[a,b] we

have

(5.1) fup,oz(xt) - i1 [y, 02 O) = My o200}, P20,
b
[ exp (X o, = exp(Xyop) - ey y)

where o f:')(2 = R(t,t). Thus the Hermite polynomials l-lp z(Xt) play the role of
customarary powers, X and exp(X,- !sc ) the role of the customary exponential,
exp(Xt), in this stochastic calculus.

The stochastic integral [ f(t)dX, for a Gaussian process X with mean function m,
of bounded variation may be defined as j'f(t)dmt + [f(t)d(xt-mt) when both integers
exist. Here, the first integral is either the sample path or the mean square inte-
gral and the second is the stochastic integral for zero mean Gaussian process.

The relationship between this stochastic integral and some previously known
integrals (e.g. when X is a Gaussian semi-martingale or when X has paths of bounded

variation) is given in Sections 7 and 8.

6. The Definition of the Stochastic Integral

Here we present the definition of the stochastic integral T and its domain D(T).

1 is the composition of the maps

-1

1=0¢+VY- 00 . I.

shown in the following diagram and defined below. It should be noted that ¢ is the
isomorphism between the nonlinear space of X and the symmetric tensor products of

its linear space (and $, is an isomorphism closely related to it) and if these two




spaces were identified, as is usually done, ¢ and % would not appear in the ex-
pression of 1. The important ingredients of the stochastic integral I are the
tensor product integral I H and the map ¥ which "symmetrizes' in an appropriate way

the tensor product of the integral I -

¥ e
M1, 00 2 Ly 00SHM) 2 " { & #*P 0 st00)

Is <p6 ¢ .0
(1) = oo = D(¥) i oIH’P(X) 2L,

p=
-1

I o = ¥

"2;3,00® =* e 2° P8 _R>onto P 00 2T -

The tensor product integral I_(f) = [ f(t)edX, is the isomorphism from A, (R)
® 'T t Z’Lz(x)
onto LZ(X)OH(X) defined for simple functions in AZ'L (X) (R) by

I (nglf 1(a b ](t))— Z £ ® (xb X )

The isomorphism from o;=0H°p(X) onto L2 (X) has been denoted by ¢, and ®, is the
corresponding isomorphism from {ozoﬂsp(x)} ® H(X) onto LZ(_X) ® H(X). '!’0 is the
natural isomorphism from ReH(X) onto H(X), V¥ (ae&;) at, and for each p=1,2,

\Pp is a bounded linear map from HQP(X) ® H(X) onto HGD 1 (X) with norm (p+1);i de-
fined as follows: if {iy,yer'} is a complete orthonormal set (CONS) .in H(X) then

°Pk~

~ ~

Y .. 5K o g} = (pi1)H 4 SE ., pPyt.t
e e ¢ Y A Sk

¥ = o;=0'¥p is the map from {o OH"p(X)} ® H(X) onto o H’p(X) whose restriction
to each HP(X) @ H(X) is v Slnce TENTIE (p*1)* is unbounded in p, ¥ is an

unbounded, densely defined linear map with domain D(¥), the set of all

2 5 .
pele 0H’p(X)} ® H(X) such that Z;gollvp(q;p)“ < » where ¢ = Z;=0¢p’ ¢p being the
projection of ¢ onto H‘p(X) ® H(X). Then H = dao{D(\l')} and the domain of the stoch-

astic integral is D(I) = 1;1(~).

7. A Useful Expression for the Stochastic Integral

Here we express the stochastic integral of a certain class of integrand pro-
cesses in terms of Riemann sums involving a tensor product denoted by . This ten-

sor product @ turns out to be the "natural' product of elements of L2 (X), in view H




of its tensor product structure a;=0H@p(X) g LZ(X). Just as the usual product of
elements of LZ(X) may not be in LZ(X) , the @ product is not defined for all ele-

ments of LZ(X). When El,...,gkeH(X), P1s-«»Py 2 0, and Pyt -*Pg = P, We define
H  (E)e...  o(E) = (p!)k¢(g:p18...3£:pk) :
PpoEEy Py B8
For general elements 6,,...,0 of L,(X) the tensor product 6,0...06, is defined
through their Cameron-Martin expansions provided the resulting series converges.
It is easy to see that as a binary operation the tensor product @ is commuta-
tive, associative and bilinear. Therefore, the algebraic manipulation of L,-
functionals under the usual product still holds true under the tensor product o .
The significance of the tensor product @ is that most algebraic formulae will have
new analytic meaning in terms of Gaussian r.v.'s.
The explicit relationship between the tensor product © and the usual product

of certain Lz-ﬁmctiona]s of X can be derived. Here are two examples. If

el,ezeLz(X) are independent then

0 = 0,0,¢L

© 8, = 8,05l (X) .

1
If F(x) and G(x) are infinitely differentiable functions on R and if there exist
constants ¢, d > 0 such that |F(p) 0)] + |G(p) 0] < cdP for all p = 0, then for

€,neH(X)

P
FE)6m) = § EN-rP ) o Py ,
(7.1 i

L P
FE) o G(n) = § CEEN g () 5y @)y |
o F

Now consider the Riemann-Stieltjes temsor product integral [f (t)edX, for
T4 L * LZ(X). This integral can be defined as the mean square limit (if it exists
and is unique) of the corresponding Riemann sums [f(t.)o(X X, ) (t:st.<t...).
i ti +1 ti 17717
When dealing with this integral, we shall always assume that T = [a,b], f(t) is
mean sjuare continuous and R(t,s) is of bounded variation on [a,b]x[a,b]. When the
integral [ f(t)od)(t exists then f belongs to the domain of the stochastic integral

and the two integrals are equal:




(7.2) [f(t)ax, = fE(t)edX, .

If f(t)e?b(X) for all teT, then f(t)@dXt exists. Also if F(t,x) is a function on

[a,b]xR continuous in t and infinitely differentiable in x, and if

(7.3) there exist c,d > 0 such that sup —EE F(t,O)i < cdP for all p=x0,
a<t<b|ox

then [f(t)edX, exists.

The equality between this Riemann-Stieltjes integral and the stochastic inte-
gral, (7.2), provides a way of evaluating the stochastic integral, and following
are some examples.

1. A routine computation shows that

b
{l X, P o dXy = (X i

which is equivalent to (5.1).

2. Let X = W be the Wiener process and let F(x) be a function satisfying (7.3).
Given u > 0, a < ¢ < ctu < b, we have the following expression for the stochastic
):

integral of the anticipating functional F(wt+u

b
£ F(wt+u)dwt

lim § F(W- , ) @ (W W)
L R, O |

Lim | {FO¥ ) O W ) - F'(Rg 0) (85,0783
1 1

ti+1 i

C C
R [ F(W,, )aW, + [ F'(W)dt
a a

where Rf:F(W£+u)th is the usual Riemann-Stieltjes integral in the mean square

sense.
b
3. [ X,edX, = 1lim | X, o(X X, )
a € ti ti+1 ti
=1limy X, o(X, -X,)
Dot ®n ™y
implies that

; 2 2
T UG e R T, A N L I
: tie1 Y L tiv1 Y

Consequently, the (mean square) quadratic variation Vg of X on [a,b] along any seq-

uence of partitions whose mesh goes to zero exists and is given by




s b
Vg 1l R(Da)

where DZ is the diagonal of [a,b]x[a,b] and R represents the signed measure

corresponding to the covariance R(t,s). Furthermore, if the uniform limit of
{R(t+u,t)-R(t,t)}u-1 , exists as ut0 on ast<b and if it is denoted by Rl(t,t),
then
SRy
(7.4) V= (of-ol) - 2f Rt t)dt .
4. Suppose X is a solution of the stochastic differential equation
dxt = a(t,Xt)dt + b(t)dwt
where W is the Wiener process and a(t,x) and b(t) are smooth scalar functions, and

that F(t,x) satisfies (7.3). Then the semi-martingale stochastic integral is
Mf F(t,X)dX, = / F(t,X)a(t,X,)dt + J F(t,X)b(t)dwW,
and the stochastic integral becomes

f F(t,X )odX, = [ [F(t,X)ea(t,X,)]dt + [ [F(t,X)eb(t)]dW, .
It then follows that
¥ s GDP o 2p
f F(t,X )edX, = Mf F(t,X,)dX, + pzl o / oy Pp(_t ,Xt)ap(t,Xt)dt

where Fp(t,x) = apF(t,x)/axp, ap(t,x) = apa(t,x)/axp. When F(t,x) = a(t)x then
X is a Guassian semi-martingale and
2
[ B(t,X)dX, = M[ F(t,X)dX, - [ o{F, (t,Xp)a(t)dt .
When F(t,x) = a(t) then our stochastic integral and the semi-martingale integral

are equal.

8. The Differential Formula

Suppose T = [a,b]. Suppose R(t,s) is continuous, of bounded variation and

2
*
R(t,s)}u'l, as w0, exists on [a,b]x[a,b] and is denoted by R,(t,s). Finally,

= R(t,t) is absolutely continuous. Suppose the uniform limit {R(t+u,s) -

suppose F(t,x) is continuously differentiable with respect to t and satisfies con-

dition (7.3). Then we have the following differential formula



{0 : ’ 2
(8.1) dF(t,X,) = F, (t,X)dt + F (t,X)dX, + % (t,X )doy ,

i.e.

%2 4 %e 2
F(ty,X, ) - F(ty,X, ) = [ “F(t,X)dt + [ B (t,X)dX, + % [ “F (t,X.)do}

2 it t t t

1 1 1
for all astlstzsb, where the first and the third integrals are mean square or
sample path integrals. The condition of F(t,x) may be relaxed when a specific R
is given.

It may seem surprising that this differential formula does not involve the

quadratic variation V of X. However, V is used implicitly in view of (7.4).

Note that if X is a Gaussian martingale then (8.1) coincides with the differ-

2
t

is the same differential formula as in the usual calculus.

ential formula for martingales, and that if o_ = R(t,t) is constant then (8.1)
P
Finally suppose that X has sample paths of bounded variation and G(t,x) is a

continuous function satisfying (7.3). Then it follows from (8.1) that

Lf G(t,X)dX, = [ G(t,X.)dX, *+% [ G, (t,X)do?

where L indicates Lebesgue integral. If, in addition, og is constant then the

stochastic integral equals the Lebesgue integral.
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